刺激响应型聚合物-药物偶联物用于抗肿瘤药物递送的研究进展

刘凤喜, 冯立霞, 王丽丽, 杨蕊, 时银萍, 闫海英, 黄欣

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (22) : 1817-1821.

PDF(1085 KB)
PDF(1085 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (22) : 1817-1821. DOI: 10.11669/cpj.2019.22.001
综述

刺激响应型聚合物-药物偶联物用于抗肿瘤药物递送的研究进展

  • 刘凤喜1, 冯立霞2, 王丽丽3, 杨蕊1, 时银萍1, 闫海英1, 黄欣1*
作者信息 +

Research Progress on Stimuli-responsive Polymer-drug Conjugates for Anti-tumor Drugs Delivery

  • LIU Feng-xi1, FENG Li-xia2, WANG Li-li3, YANG Rui1, SHI Yin-ping1, YAN Hai-ying1, HUANG Xin1*
Author information +
文章历史 +

摘要

聚合物-药物偶联物(polymer-drug conjugates,PDCs)具有循环稳定性好和载药量高的优势,因而得到了广泛的研究。刺激-响应型PDCs(stimuli responsive PDCs, SRPDCs)可在一些内源性刺激因素(如酸性pH环境、改变的氧化还原环境和上调表达的酶)以及外在刺激因素(如磁场、光照、温度和超声)作用下,响应性释放所载药物,因此被称为“智能”药物纳米递送载体。笔者近年来SRPDCs用于抗肿瘤药物递送的研究进展,包括其设计思路、所用的智能连接键以及释药性质进行了综述,以期为开展相关研究提供参考。此外,为促进SRPDCs技术的成功转化,笔者对目前研究中存在的问题、难点以及将来的研究方向进行了讨论和分析。

Abstract

Polymer-drug conjugates (PDCs) have been extensively studied as nanocarriers for anti-tumor drugs delivery due to excellent stability in circulation and high drug loading ability. Stimuli-responsive PDCs(SRPDCs) could release the loading drug in response to various intra-or extracellular biological stimulis (eg, acidic pH, altered redox potential, and upregulated enzyme), as well as external artificial stimulis (eg, magnetic feld, light, temperature, and ultrasound), which are considered as “smart”nanocarriers for delivery of anti-tumor drugs. In this article, recent progresses in the development of SRPDCs for cancer therapy are reviewed, covering the design, smart linkages as well as responsive drug release property, so as to provide reference for the development of related drug delivery systems. In order to improve the successful translation of stimuli-responsive PDCs, drawbacks and limitations of current researches are discussed, besides, future perspectives and research strategies are also provided.

关键词

聚合物-药物偶联物 / 刺激-响应释药 / 抗肿瘤药物递送 / 肿瘤靶向 / 纳米载体

Key words

polymer-drug conjugates / stimuli-responsive drug release / anti-tumor drug delivery / tumor targeting / nanocarrier

引用本文

导出引用
刘凤喜, 冯立霞, 王丽丽, 杨蕊, 时银萍, 闫海英, 黄欣. 刺激响应型聚合物-药物偶联物用于抗肿瘤药物递送的研究进展[J]. 中国药学杂志, 2019, 54(22): 1817-1821 https://doi.org/10.11669/cpj.2019.22.001
LIU Feng-xi, FENG Li-xia, WANG Li-li, YANG Rui, SHI Yin-ping, YAN Hai-ying, HUANG Xin. Research Progress on Stimuli-responsive Polymer-drug Conjugates for Anti-tumor Drugs Delivery[J]. Chinese Pharmaceutical Journal, 2019, 54(22): 1817-1821 https://doi.org/10.11669/cpj.2019.22.001
中图分类号: R944   

参考文献

[1] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[2] RINGSDORF H. Structure and properties of pharmacologically active polymers[J]. J Phys Condens Matter, 1975, 51(1):135-153.
[3] SHENG Y, YOU Y W, CHEN Y. Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer[J]. Int J Pharm, 2016, 512(1):1-13.
[4] DUNCAN R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century[J]. J Drug Target, 2017, 25(9-10):759-780.
[5] DUNCAN R, VICENT M J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities[J]. Adv Drug Deliv Rev, 2010, 62(2):272-282.
[6] EKLADIOUS I, COLSON Y L, GRINSTAFF M W. Polymer-drug conjugate therapeutics: advances, insights and prospects[J]. Nat Rev Drug Discov, 2019, 18(4):273-294.
[7] FERNANDES C, SUARES D, YERGERI M C. Tumor microenvironment targeted nanotherapy[J]. Front Pharmacol, 2018, 9: 1230.
[8] THAMBI T, PARK J H, LEE D S. Stimuli-responsive polymersomes for cancer therapy[J]. Biomater Sci, 2016, 4(1):55-69.
[9] SANCHEZ-MORENO P, DE VICENTE J. Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications[J]. Nanomaterials (Basel), 2018, 8(11):935.
[10] JATZKEWITZ H. Incorporation of physiologically-active substances into a colloidal blood plasma substitute. I. Incorporation of mescaline peptide into polyvinylpyrrolidone[J]. Hoppe Seylers Z Physiol Chem, 1954, 297(3-6):149-156.
[11] BUI K, ZHOU D, XU H, et al. Clinical pharmacokinetics and pharmacodynamics of naloxegol, a peripherally acting micro-opioid receptor antagonist[J]. Clin Pharmacokinet, 2017, 56(6):573-582.
[12] TANNOCK F I, INS D H. Acid pH in tumors and its potential for therapeutic exploitation[J]. Cancer Res, 1989, 49(10):4373-4384.
[13] PANG X, JIANG Y, XIAO Q, et al. pH-Responsive polymer-drug conjugates: design and progress[J]. J Controlled Release, 2016, 222: 116-129.
[14] BRASLAWSKY G R, EDSON M A, PEARCE W, et al. Antitumor activity of adriamycin (hydrazone-linked) immunoconjugates compared with free adriamycin and specificity of tumor cell killing[J]. Cancer Res, 1990, 50(20):6608-6614.
[15] SIROVA M, MRKVAN T, ETRYCH T, et al. Preclinical evaluation of linear HPMA-doxorubicin conjugates with pH-sensitive drug release: efficacy, safety, and immunomodulating activity in murine model[J]. Pharm Res, 2010, 27(1):200-208.
[16] GU Y, ZHONG Y, MENG F, et al. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy[J]. Biomacromolecules, 2013, 14(8):2772-2780.
[17] ZHU S, HONG M, TANG G, et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style[J]. Biomaterials, 2010, 31(6):1360-1371.
[18] KE X J, COADY D, YANG C, et al. pH-Sensitive polycarbonate micelles for enhanced intracellular release of anticancer drugs: a strategy to circumvent multidrug resistance[J]. Polym Chem, 2014, 5(7):2621-2628.
[19] ZOU J, ZHANG F, ZHANG S, et al. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery[J]. Adv Healthc Mater, 2014, 3(3):441-448.
[20] KUPPUSAMY P, LI H, ILANGOVAN G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J]. Cancer Res, 2002, 62(1):307-312.
[21] HU H, LI Y, ZHOU Q, et al. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery[J]. ACS Appl Mater Interfaces, 2016, 8(45):30833-30844.
[22] KESSENBROCK K, PLAKS V, WERB Z. Matrix metalloproteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1):52-67.
[23] ZHU L, WANG T, PERCHE F, et al. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety[J]. Proc Natl Acad Sci USA, 2013, 110(42):17047.
[24] AGGARWAL N, SLOANE B F. Cathepsin B: multiple roles in cancer[J]. Proteomics Clin Appl, 2014, 8(5-6):427-437.
[25] FDA. Cell Therapeutics Announces GOG Completes Patient Enrollment in GOG-0212 Phase 3 Clinical Trial of Paclitaxel Poliglumex (OpaxioTM) as Maintenance Therapy in Ovarian Cancer[EB/OL] [2014-01-28]. Available from: http://investors. celltherapeutics. com/phoenix. zhtml?c= 110092775&p=irol-newsArticle&ID=1894055&highlight=opaxio.
[26] CORTES J, RUGO H S, AWADA A, et al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase III BEACON trial[J]. Breast Cancer Res Treat,2017, 165(2):329-341.
[27] ROSS H, BONOMI P, LANGER C, et al. Effect of gender on outcome in two randomized phase Ⅲ trials of paclitaxel poliglumex (PPX) in chemonave pts with advanced NSCLC and poor performance status (PS2)[J]. J Clin Oncol, 2006, 24(18_suppl):7039-7039.
[28] GAO S Q, LU Z R, PETRI B, et al. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer[J]. J Controlled Release, 2006, 110(2):323-331.
[29] GAO S Q, LU Z R, KOPEKOV P, et al. Biodistribution and pharmacokinetics of colon-specific HPMA copolymer-9-aminocamptothecin conjugate in mice[J]. J Controlled Release, 2007, 117(2):179-185.
[30] SHARMA R, RAWAL R K, MALHOTRA M, et al. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene-anticancer drug conjugates[J]. Bioorg Med Chem, 2014, 22(3):1104-1114.
[31] ZHOU Q, ZHANG L, YANG T, et al. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy[J]. Int J Nanomed, 2018, 13: 2921-2942.
[32] LIU L, WANG R, WANG C, et al. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy[J]. Biomater Sci, 2018, 6(5):997-1001.
[33] THAPA P, LI M, KARKI R, et al. Folate-PEG conjugates of a far-red light-activatable paclitaxel prodrug to Improve selectivity toward folate receptor-positive cancer cells[J]. ACS Omega, 2017, 2(10):6349-6360.
[34] OU Y, CHEN K, CAI H, et al. Enzyme/pH-sensitive polyHPMA-DOX conjugate as a biocompatible and efficient anticancer agent[J]. Biomater Sci, 2018, 6(5):1177-1188.
[35] TALELLI M, VICENT M J. Reduction sensitive poly(l-glutamic acid) (PGA)-protein conjugates designed for polymer masked-unmasked protein therapy[J]. Biomacromolecules, 2014, 15(11):4168-4177.
[36] QIAO Z Y, ZHAO W J, CONG Y, et al. Self-assembled ROS-sensitive polymer-peptide therapeutics incorporating built-in reporters for evaluation of treatment efficacy[J]. Biomacromolecules, 2016, 17(5):1643-1652.
[37] CHENG D B, ZHANG X H, GAO Y J, et al. Endogenous reactive oxygen species-triggered morphology transformation for enhanced cooperative interaction with mitochondria[J]. J Am Chem Soc,2019, 141(18):7235-7239.
[38] NG K K, ZHENG G. Molecular interactions in oganic nanoparticles for phototheranostic applications[J]. Chem Rev, 2015, 115(19):11012-11042.
[39] STAEGEMANN M H, GRAFE S, GITTER B, et al. Hyperbranched polyglycerol loaded with (Zinc-) porphyrins: photosensitizer release under reductive and acidic conditions for improved photodynamic therapy[J]. Biomacromolecules, 2018, 19(1):222-238.
[40] PAZ-ARES L, ROSS H, O′BRIEN M, et al. Phase Ⅲ trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer[J]. Br J Cancer, 2008, 98(10):1608-1613.
PDF(1085 KB)

Accesses

Citation

Detail

段落导航
相关文章

/